• Centre for Microbiology and Environmental Systems Science

  • CUBE - Computational Systems Biology

  • DOME - Microbial Ecology

  • EDGE - Environmental Geosciences

  • TER - Terrestrial Ecosystem Research


Latest publications

Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers.

Oxidative cell damage has been linked to the pathogenesis of numerous diseases such as atherosclerosis, type 2 diabetes, and cancer. The consumption of foods rich in polyphenols (e.g. anthocyanins) has been shown to exert preventive effects against such diseases. We investigated the biological effects of anthocyanin-rich fruit juice in a 9-week, placebo-controlled intervention study with 57 healthy male volunteers. The study design encompassed an initial 1 week of wash-out, followed by 8 weeks of intervention period with anthocyanin-rich fruit juice or placebo. The anthocyanin-rich fruit juice demonstrated DNA-protective and antioxidant effects; however, the placebo beverage, rich in vitamin C, showed similar effects based on the tested biomarkers. A significant reduction in background and total DNA strand breaks was observed in both groups within 24 h as well as after 8 weeks of intervention. Only anthocyanin-rich fruit juice consumption provided a significant reduction in body fat and an increase in fat-free mass. The activity of superoxide dismutase (SOD) was significantly elevated after consumption of anthocyanin-rich fruit juice. Both groups showed decreased levels of LDL and total cholesterol (TC) within the first week of the intervention. Similar results in both groups could be explained by the relatively high vitamin C contents of both beverages (>500 mg/L), which may have masked the effects of anthocyanins and other antioxidants in the studied juice. Taken together, anthocyanin-rich fruit juice as well as the placebo drink, both of which had high vitamin C content, can improve DNA integrity and might influence lipid metabolism in humans.

Bakuradze T, Tausend A, Galan J, Maria Groh IA, Berry D, Tur JA, Marko D, Richling E
2019 - Free Radic. Res., 1-11

The membrane lipid composition of the moderately thermophilic ammonia-oxidizing archaeon Ca. Nitrosotenuis uzonensis at different growth temperatures

Ca. Nitrosotenuis uzonensis is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37, 46 and 50 °C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (crenʹ) were present in high abundance (30-70 %). The GDGT polar headgroups were mono-, di- and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50 °C. With increasing growth temperature, the relative contribution of cren and crenʹ increased, while GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota. As temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarcheotal core lipid compositions revealed the Ca. N. uzonensis cultures clustered separately fromother members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of Ca. Nitrosotenuis uzonensis demonstrates that its terrestrial, higher temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high crenʹ content.

Bale NJ, Palatinszky M, Rijpstra WIC, Herbold CW, Wagner M, Damste JSS
2019 - Appl Environ Microbiol, in press

Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems

In many seagrass sediments, lucinid bivalves and their sulfur-oxidizing symbionts are thought to underpin key ecosystem functions, but little is known about their role in nutrient cycles, particularly nitrogen. We used natural stable isotopes, elemental analyses, and stable isotope probing to study the ecological stoichiometry of a lucinid symbiosis in spring and fall. Chemoautotrophy appeared to dominate in fall, when chemoautotrophic carbon fixation rates were up to one order of magnitude higher as compared with the spring, suggesting a flexible nutritional mutualism. In fall, an isotope pool dilution experiment revealed carbon limitation of the symbiosis and ammonium excretion rates up to tenfold higher compared with fluxes reported for nonsymbiotic marine bivalves. These results provide evidence that lucinid bivalves can contribute substantial amounts of ammonium to the ecosystem. Given the preference of seagrasses for this nitrogen source, lucinid bivalves’ contribution may boost productivity of these important blue carbon ecosystems.
Ulisse Cardini, Marco Bartoli, Sebastian Lücker, Maria Mooshammer, Julia Polzin, Raymond W. Lee, Vesna Micić, Thilo Hofmann, Miriam Weber, Jillian M. Petersen
2019 - The ISME journal, in press

Lecture series

Advanced Chemical Microscopy for Life Science and Precision Medicine

Ji-Xin Cheng
Boston University, USA
12:00 h
Lecture Hall HS4, UZA2, Althanstrasse 14, 1090 Wien