Metamenu

  • Centre for Microbiology and Environmental Systems Science

  • CUBE - Computational Systems Biology

  • DOME - Microbial Ecology

  • EDGE - Environmental Geosciences

  • TER - Terrestrial Ecosystem Research

News

Latest publications

Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean

Nitrification, the oxidation of ammonia via nitrite to nitrate, is a key process in marine nitrogen (N) cycling. Although oceanic ammonia and nitrite oxidation are balanced, ammonia-oxidizing archaea (AOA) vastly outnumber the main nitrite oxidizers, the bacterial Nitrospinae. The ecophysiological reasons for this discrepancy in abundance are unclear. Here, we compare substrate utilization and growth of Nitrospinae to AOA in the Gulf of Mexico. Based on our results, more than half of the Nitrospinae cellular N-demand is met by the organic-N compounds urea and cyanate, while AOA mainly assimilate ammonium. Nitrospinae have, under in situ conditions, around four-times higher biomass yield and five-times higher growth rates than AOA, despite their ten-fold lower abundance. Our combined results indicate that differences in mortality between Nitrospinae and AOA, rather than thermodynamics, biomass yield and cell size, determine the abundances of these main marine nitrifiers. Furthermore, there is no need to invoke yet undiscovered, abundant nitrite oxidizers to explain nitrification rates in the ocean.

Kitzinger K, Marchant H, Bristow L, Herbold C, Padilla C, Kidane A, Littmann S, Daims H, Pjevac P, Stewart F, Wagner M, Kuypers M
2020 - Nat. Commun., in press

A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem

Temperature governs most biotic processes, yet we know little about how warming affects whole ecosystems. Here we examined the responses of 128 components of a subarctic grassland to either 5–8 or >50 years of soil warming. Warming of >50 years drove the ecosystem to a new steady state possessing a distinct biotic composition and reduced species richness, biomass and soil organic matter. However, the warmed state was preceded by an overreaction to warming, which was related to organism physiology and was evident after 5–8 years. Ignoring this overreaction yielded errors of >100% for 83 variables when predicting their responses to a realistic warming scenario of 1 °C over 50 years, although some, including soil carbon content, remained stable after 5–8 years. This study challenges long-term ecosystem predictions made from short-term observations, and provides a framework for characterization of ecosystem responses to sustained climate change.

Walker TWN, Janssens IA, Weedon JT, Sigurdsson BD, Richter A, Peñuelas J, Leblans NI Bahn M, Bartrons M, De Jonge C, Fuchslueger L, Gargallo-Garriga A, Gunnarsdóttir GE, Marañon-Jimenez S, Oddsdóttir ES, Ostonen I, Poeplau C, Prommer J, Radujković D, Sardans J, Sigurðsson P, Soong JL, Vicca S, Wallander H, Ilieva-Makulec K, Verbruggen E
2020 - Nature Ecology & Evolution, 4: 101-108

Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth.

Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium is the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of , e.g., by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole-genome transcriptomics to investigate the overall effect of oxygen limitation on Under oxygen-limited conditions, growth yield was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene () was significantly lower. In contrast, both heme-copper-containing cytochrome oxidases encoded by were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of sNOR with regard to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in and other ammonia-oxidizing bacteria. Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, , growing under oxygen-limited conditions.

Sedlacek CJ, Giguere AT, Dobie MD, Mellbye BL, Ferrell RV, Woebken D, Sayavedra-Soto LA, Bottomley PJ, Daims H, Wagner M, Pjevac P
2020 - mSystems, 1: in press

Lecture series

Metals and microbial respiration: the molecular basis of bioelectricity production and greenhouse gas destruction

David Richardson
University of East Anglia, Norwich Research Park, Norwich, UK
23.01.2020
12:00 h
Lecture Hall HS2, UZA1, Althanstrasse 14, 1090 Wien

ESR as a tool to investigate environmentally persistent and short-lived radicals

Prof. Dr Marc Pignitter
Department of Physiological Chemistry, University of Vienna, Austria
27.01.2020
16:30 h
Eberhard Clar-Saal (2B 204), Althanstrasse 14 UZA II, 1090 Vienna

Ammonia oxidising archaea: From environments to enzymes

Laura Lehtovirta-Morley
University of East Anglia
30.01.2020
12:00 h
Lecture Hall HS2, UZA1, Althanstrasse 14, 1090 Wien