Metamenu

Publications

The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

2 Publications found
  • Highly variable mRNA half-life time within marine bacterial taxa and functional genes.

    Steiner PA, De Corte D, Geijo J, Mena C, Yokokawa T, Rattei T, Herndl GJ, Sintes E
    2019 - Environ. Microbiol., in press

    Abstract: 

    Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half-life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half-life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half-live times shorter than 10 min. Significant differences were found in the half-life time between mRNA and rRNA. The half-life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half-life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half-life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half-life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.

  • A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders.

    Dos Santos-Pinto JRA, Esteves FG, Sialana FJ, Ferro M, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Palma MS, Lubec G
    2019 - Mol Omics, 4: 256-270

    Abstract: 

    Orb-weaving spiders can produce different silk fibers, which constitute outstanding materials characterized by their high strength and elasticity. Researchers have tried to reproduce the fibers of these proteins synthetically and/or by using recombinant DNA technology, but only a few of the natural physicochemical and biophysical properties have been obtained to date. Female orb-web-spiders present seven silk-glands, which synthesize the spidroins and a series of other proteins, which interact with the spidroins, resulting in silk fibers with notable physicochemical properties. Despite the recognized importance of the silk-glands for understanding how the fibers are produced and processed, the investigation of these glands is at a nascent stage. In the current study we present the assembled transcriptome of silk-producing glands from the orb-weaving spider Nephila clavipes, as well as develop a large-scale proteomic approach for in-depth analyses of silk-producing glands. The present investigation revealed an extensive repertoire of hitherto undescribed proteins involved in silk secretion and processing, such as prevention of degradation during the silk spinning process, transportation, protection against proteolytic autolysis and against oxidative stress, molecular folding and stabilization, and post-translational modifications. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among three groups of silk-producing organisms - (i) Araneomorphae spiders, (ii) Mygalomorphae spiders, and (iii) silk-producing insects. A common orthologous gene, which was annotated as silk gland factor-3 is present among all species analysed. This protein belongs to a transcription factor family, that is important and related to the development of the silk apparatus synthesis in the silk glands of silk-producing arthropods.

Book chapters and other publications

No matching database entries were found.

Word Document