Metamenu

Publications

The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

22 Publications found
  • Spatiotemporal Dynamics of Maize (Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota

    Bonkowski M, Tarkka M, Razavi BS, Schmidt H, Blagodatskaya E, Koller R, Yu P, Knief C, Hochholdinger F, Vetterlein D
    2021 - Frontiers in microbiology, 12: Article 619499

    Abstract: 

    Numerous studies have shown that plants selectively recruit microbes from the soil to establish a complex, yet stable and quite predictable microbial community on their roots – their “microbiome” (Berg and Smalla, 2009Hartmann et al., 2009Weinert et al., 2010). Microbiome assembly is considered as a key process in the self-organization of root systems (Vetterlein et al., 2020). Better control of microbiome assembly would improve plant health and fitness by promoting beneficial microbial traits (Friesen et al., 2011Oyserman et al., 2018Wille et al., 2019). A fundamental question for understanding plant-microbe relationships is where a predictable microbiome is formed along the root axis and through which microbial dynamics the stable formation of a microbiome is challenged. Theoretically, community assembly begins with random, unregulated colonization of taxa from nearby sites (i.e., neutral processes), a process that continues throughout the lifetime of roots; while ordered dynamics (microbiome assembly) occur through selection (i.e., niche-based processes) when (i) exudates promote fast-growing copiotrophic taxa, (ii) root signals attract specific symbionts or pathogens, (iii) increased competition due to limited resource availability leads to species sorting, and (iv) predation selects for specific microbial traits among members of the microbiome (Vellend, 2010Hardoim et al., 2011Ho et al., 2017Kudjordjie et al., 2019Amacker et al., 2020Chen et al., 2020). These microbial assembly processes again are embedded in plant-driven spatiotemporal dynamics at small and large scales, caused by differences in the quality and quantity of rhizodeposition: (i) along the root axis, (ii) during diurnal cycles, (iii) on different root types, and (iv) during plant development. Emphasizing maize as a model species for which numerous data on dynamic root traits are available, this mini-review aims to give an integrative overview on the dynamic nature of root growth and its consequences for microbiome assembly based on theoretical considerations from microbial community ecology.

  • Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica

    Oberleitner F, Egger C, Oberdorfer S, Dullinger S, Wanek W, Hietz P
    2021 - Forest Ecology and Management, 479: Article 118580

    Abstract: 

    Tropical secondary forests comprise about half of the world’s tropical forests and are important as carbon sinks and to conserve biodiversity. Their rate of recovery varies widely; however, particularly older secondary forests are difficult to date so that the recovery rate is uncertain. As a consequence, factors affecting recovery are difficult to analyse. We used aerial surveys going back to 1968 to date 12 secondary forests in the wet tropics of SW Costa Rica and evaluated the recovery of aboveground biomass, tree species richness and tree species composition in relation to nearby old-growth forests and previous land use. To confirm the validity of the space-for-time substitution, the plots were re-censused after four years. We found fast rates of aboveground biomass accumulation, especially in the first years of succession. After 20 years AGB had reached c. 164 Mg/ha equivalent to 52% of the biomass in old-growth forests in the region. Species richness increased at a slower pace and had reached c. 31% of old-growth forests after 20 years. Recovery rates differed substantially among forests, with biomass at least initially recovering faster in forests after clearcuts whereas species numbers increased faster in forests recovering from pastures. Biomass recovery was positively related to the forest cover in the vicinity and negatively to species richness, whereas species richness was related to soil parameters. The change during the four years between the censuses is broadly in line with the initial chronosequence. While the recovery of tropical secondary forests has been studied in many places, our study shows that various environmental parameters affect the speed of recovery, which is important to include in efforts to manage and restore tropical landscapes.

  • A critical perspective on interpreting amplicon sequencing data in soil ecological research

    Alteio LV, Séneca J, Canarini A, Angel R, Jansa J, Guseva K, Kaiser C, Richter A, Schmidt H
    2021 - Soil Biology and Biochemistry, 160: Article 108357

    Abstract: 

    Microbial community analysis via marker gene amplicon sequencing has become a routine method in the field of soil research. In this perspective, we discuss technical challenges and limitations of amplicon sequencing and present statistical and experimental approaches that can help addressing the spatio-temporal complexity of soil and the high diversity of organisms therein. We illustrate the impact of compositionality on the interpretation of relative abundance data and discuss effects of sample replication on the statistical power in soil community analysis. Additionally, we argue for the need of increased study reproducibility and data availability, as well as complementary techniques for generating deeper ecological insights into microbial roles and our understanding thereof in soil ecosystems. At this stage, we call upon researchers and specialized soil journals to consider the current state of data analysis, interpretation, and availability to improve the rigor of future studies.

  • Denitrification is the major nitrous acid production pathway in boreal agricultural soils

    Bhattarai HR, Wanek W, Siljanen H, Ronkainen J, Liimatainen M, Hu Y, Nykänen H, Biasi C, Maljanen M
    2021 - Communications Earth and Environment, 2: 54

    Abstract: 

    Nitrous acid (HONO) photolysis produces hydroxyl radicals—a key atmospheric oxidant. Soils are strong HONO emitters, yet HONO production pathways in soils and their relative contributions are poorly constrained. Here, we conduct 15N tracer experiments and isotope pool dilution assays on two types of agricultural soils in Finland to determine HONO emission fluxes and pathways. We show that microbial processes are more important than abiotic processes for HONO emissions. Microbial nitrate reduction (denitrification) considerably exceeded ammonium oxidation as a source of nitrite—a central nitrogen pool connected with HONO emissions. Denitrification contributed 97% and 62% of total HONO fluxes in low and high organic matter soil, respectively. Microbial ammonium oxidation only produced HONO in high organic matter soil (10%). Our findings indicate that microbial nitrate reduction is an important HONO production pathway in aerobic soils, suggesting that terrestrial ecosystems favouring it could be HONO emission hotspots, thereby influencing atmospheric chemistry.

  • Permafrost causes unique fine-scale spatial variability across tundra soils

    Siewert MB., Lantuit H, Richter A, Hugelius G
    2021 - Global Biogeochemical Cycles, 35: e2020GB006659

    Abstract: 

    Spatial analysis in earth sciences is often based on the concept of spatial autocorrelation, expressed by W. Tobler as the first law of geography: “everything is related to everything else, but near things are more related than distant things." Here, we show that subsurface soil properties in permafrost tundra terrain exhibit tremendous spatial variability. We describe the subsurface variability of soil organic carbon (SOC) and ground ice content from the centimeter to the landscape scale in three typical tundra terrain types common across the Arctic region. At the soil pedon scale, that is, from centimeters to 1–2 m, variability is caused by cryoturbation and affected by tussocks, hummocks and nonsorted circles. At the terrain scale, from meters to tens of meters, variability is caused by different generations of ice‐wedges. Variability at the landscape scale, that is, ranging hundreds of meters, is associated with geomorphic disturbances and catenary shifts. The co‐occurrence and overlap of different processes and landforms creates a spatial structure unique to permafrost environments. The coefficient of variation of SOC at the pedon scale (21%–73%) exceeds that found at terrain (17%–66%) and even landscape scale (24%–67%). Such high values for spatial variation are otherwise found at regional to continental scale. Clearly, permafrost soils do not conform to Tobler's law, but are among the most variable soils on Earth. This needs to be accounted for in mapping and predictions of the permafrost carbon feedbacks through various ecosystem processes. We conclude that scale deserves special attention in permafrost regions.

  • Responses of grassland soil CO2 production and fluxes to drought are shifted in a warmer climate under elevated CO2

    Reinthaler D, Harris E, Richter A, Herndl M, Pötsch E, Wachter H, Bahn M
    2021 - Soil Biology and Biochemistry, 163: Article 108436

    Abstract: 

    As the climate warms, drought events are expected to increase in intensity and frequency, with consequences for the carbon cycleSoil respiration (Rs) accounts for the largest flux of CO2 from terrestrial ecosystems to the atmosphere. While the drought responses of Rs have been well studied, it is uncertain how they will be modified in a future world, when higher temperatures will occur in combination with elevated atmospheric CO2 concentrations. In a global change experiment in a managed temperate grassland, we studied drought and post-drought responses of Rs dynamics under current versus likely future conditions (+3°, +300 ppm CO2). Furthermore, to understand the soil CO2 production (Ps) and transport dynamics underlying Rs fluxes we continuously monitored in-situ soil CO2 concentrations across the soil profile. Our results show that Rs was higher and that drought-induced reductions in Rs were delayed under future compared to current conditions. Peak drought reductions and post-drought pulses of Rs were more pronounced in the future scenario. Annual Rs was reduced by drought only under current but not under future conditions. An in-depth analysis of soil CO2 gradients and fluxes across the soil profile showed that elevated CO2 stimulated Ps primarily in the main rooting horizon and that warming affected Ps also in deeper soil layers. We found that both in the current and the future scenario drought led to the strongest reductions of Ps in the most productive soil layers, which also exhibited the largest depletion of soil moisture. We conclude that a future warmer climate under elevated CO2 amplifies soil CO2 production and efflux and their peak drought and post-drought responses, but delays the onset of the drought responses and thereby eliminates the overall drought effect on annual soil CO2 emissions.

  • Editorial: Exchanges at the Root-Soil Interface: Resource Trading in the Rhizosphere That Drives Ecosystem Functioning

    Preece K, Canarin A, Verbruggen E, Fuchslueger L
    2021 - Frontiers in Forests and Global Change, 4: Article 747492
  • Bypass and hyperbole in soil science: A perspective from the next generation of soil scientists

    Portell X,  Sauzet O,  Balseiro-Romero M,  Benard P,  Cardinael R,  Couradeau E,  Danra DD,  Evans DL,  Fry EL, Hammer E,  Mamba D,  Merino-Martín L,  Mueller CW, Paradelo M, Rees F,  Rossi M, Schmidt H,  Schnee LS,  Védère C, Vidal A
    2021 - European Journal of Soil Science, 72: 31-34
  • Functional traits of a rainforest vascular epiphyte community: trait covariation and indications for host specificity

    Wagner K, Wanek W, Zotz G
    2021 - Diversity, 13: 97

    Abstract: 

    Trait matching between interacting species may foster diversity. Thus, high epiphyte diversity in tropical forests may be partly due to the high diversity of trees and some degree of host specificity. However, possible trait matching between epiphyte and host is basically unexplored. Since the epiphytic habitat poses particular challenges to plants, their trait correlations should differ from terrestrial plants, but to what extent is unclear as epiphytes are underrepresented or missing in the large trait databases. We quantified 28 traits of 99 species of vascular epiphytes in a lowland forest in Panama that were related to plant size, leaf, stem, and root morphology; photosynthetic mode; and nutrient concentrations. We analyzed trait covariation, community weighted means, and functional diversity for assemblages on stems and in crowns of four tree species. We found intriguing differences between epiphytes and terrestrial plants regarding trait covariation in trait relations between plant maximal height, stem specific density, specific root length, and root tissue den-sity, i.e., stem and root economic spectra. Regarding host specificity, we found strong evidence for environmental filtering of epiphyte traits, but only in tree crowns. On stems, community weighted means differed in only one case, whereas > 2/3 of all traits differed in tree crowns. Although we were only partly able to interpret these differences in the light of tree trait differences, these findings mark an important step towards a functional understanding of epiphyte host specificity.

  • No effect of long-term soil warming on diffusive soil inorganic and organic nitrogen fluxes in a temperate forest soil

    Heinzle J, Wanek W, Tian Y, Kwatcho-Kengdo S, Borken W, Schindlbacher A, Inselsbacher E
    2021 - Soil Biology and Biochemistry, 158: Article 108261

    Abstract: 

    Climate warming affects nitrogen (N) cycling in forest soils, but implications for plant available N have remained unclear. We estimated in situ diffusive fluxes of amino acids and inorganic N in a temperate forest soil after 14 years of soil warming. Results from four sampling campaigns (n = 1152 microdialysis samples) during the growing season showed no effect of warming on diffusive N fluxes. Diffusive NH4+ fluxes increased from spring towards autumn while NO3 fluxes followed an opposite trend. Overall, the proportion of amino acids in the total diffusive N flux was low (13–30%) in this carbonate soil compared to other temperate and boreal forest soils.

  • Tree Species and Epiphyte Taxa Determine the “Metabolomic niche” of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest

    Gargallo-Garriga A, Sardans J, Alrefaei AF, Klem K, Fuchslueger L, Ramírez-Rojas I, Donald J, Leroy C, Van Langenhove L, Verbruggen E, Janssens IA, Urban O, Peñuelas J
    2021 - Metabolites, 11: Article 718

    Abstract: 

    Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes.

  • Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations

    Schnecker J, Meeden DB, Calderon F, Cavigelli M, Lehman RM, Tiemann LK, Grandy AS
    2021 - Soil, 547-561

    Abstract: 

    Increasing climatic pressures such as drought and flooding challenge agricultural systems and their management globally. How agricultural soils respond to soil water extremes will influence biogeochemical cycles of carbon and nitrogen in these systems. We investigated the response of soils from long-term agricultural field sites under varying crop rotational complexity to either drought or flooding stress. Focusing on these contrasting stressors separately, we investigated soil heterotrophic respiration during single and repeated stress cycles in soils from four different sites along a precipitation gradient (Colorado, MAP 421 mm; South Dakota, MAP 580 mm; Michigan, MAP 893 mm; Maryland, MAP 1192 mm); each site had two crop rotational complexity treatments. At the driest (Colorado) and wettest (Maryland) of these sites, we also analyzed microbial biomass, six potential enzyme activities, and N2O production during and after individual and repeated stress cycles. In general, we found site specific responses to soil water extremes, irrespective of crop rotational complexity and precipitation history. Drought usually caused more severe changes in respiration rates and potential enzyme activities than flooding. All soils returned to control levels for most measured parameters as soon as soils returned to control water levels following drought or flood stress, suggesting that the investigated soils were highly resilient to the applied stresses. The lack of sustained responses following the removal of the stressors may be because they are well in the range of natural in situ soil water fluctuations at the investigated sites. Without the inclusion of plants in our experiment, we found that irrespective of crop rotation complexity, soil and microbial properties in the investigated agricultural soils were more resistant to flooding but highly resilient to drought and flooding during single or repeated stress pulses.

  • Microbial responses to herbivory-induced vegetation changes in a high-Arctic peatland

    Bender KM, Svenning MM, Hu Y, Richter A, Schückel J, Liebner S, Tveit AT
    2021 - Polar Biology, 44: 899-911

    Abstract: 

    Herbivory by barnacle geese (Branta leucopsis) alters the vegetation cover and reduces ecosystem productivity in high-Arctic peatlands, limiting the carbon sink strength of these ecosystems. Here we investigate how herbivory-induced vegetation changes affect the activities of peat soil microbiota using metagenomics, metatranscriptomics and targeted metabolomics in a comparison of fenced exclosures and nearby grazed sites. Our results show that a different vegetation with a high proportion of vascular plants developed due to reduced herbivory, resulting in a larger and more diverse input of polysaccharides to the soil at exclosed study sites. This coincided with higher sugar and amino acid concentrations in the soil at this site as well as the establishment of a more abundant and active microbiota, including saprotrophic fungi with broad substrate ranges, like Helotiales (Ascomycota) and Agaricales (Basidiomycota). A detailed description of fungal transcriptional profiles revealed higher gene expression for cellulose, hemicellulose, pectin, lignin and chitin degradation at herbivory-exclosed sites. Furthermore, we observed an increase in the number of genes and transcripts for predatory eukaryotes such as Entomobryomorpha (Arthropoda). We conclude that in the absence of herbivory, the development of a vascular vegetation alters the soil polysaccharide composition and supports larger and more active populations of fungi and predatory eukaryotes.

  • The effect of salinity, light regime and food source on C and N uptake in a benthic foraminifera

    Lintner M, Lintner B, Wanek W, Keul N, Heinz P
    2021 - Biogeosciences, 18: 1395–1406

    Abstract: 

    Foraminifera are unicellular organisms that play an important role in marine organic matter cycles. Some species are able to isolate chloroplasts from their algal food source and incorporate them as kleptoplasts into their own metabolic pathways, a phenomenon known as kleptoplastidy. One species showing this ability is Elphidium excavatum, a common foraminifer in the Kiel Fjord, Germany. The Kiel Fjord is fed by several rivers and thus forms a habitat with strongly fluctuating salinity. Here, we tested the effects of the food source, salinity and light regime on the food uptake (via 15N and 13C algal uptake) in this kleptoplast-bearing foraminifer. In our study E. excavatum was cultured in the lab at three salinity levels (15, 20 and 25) and uptake of C and N from the food source Dunaliella tertiolecta (Chlorophyceae) and Leyanella arenaria (Bacillariophyceae) were measured over time (after 3, 5 and 7 d). The species was very well adapted to the current salinity of the sampling region, as both algal N and C uptake was highest at a salinity of 20. It seems that E. excavatum coped better with lower than with higher salinities. The amount of absorbed C from the green algae D. tertiolecta showed a tendency effect of salinity, peaking at a salinity of 20. Nitrogen uptake was also highest at a salinity of 20 and steadily increased with time. In contrast, C uptake from the diatom L. arenaria was highest at a salinity of 15 and decreased at higher salinities. We found no overall significant differences in C and N uptake from green algae vs. diatoms. Furthermore, the food uptake at a light–dark rhythm of 16:8h was compared to continuous darkness. Darkness had a negative influence on algal C and N uptake, and this effect increased with incubation time. Starving experiments showed a stimulation of food uptake after 7 d. In summary, it can be concluded that E. excavatum copes well with changes of salinity to a lower level. For changes in light regime, we showed that light reduction caused a decrease of C and N uptake by E. excavatum.

  • Leaf trait co-variation and trade-offs in gallery forest C3 and CAM epiphytes

    Oliveira RdP, Zotz G, Wanek W, Franco AC
    2021 - Biotropica, 3: 520–535

    Abstract: 

    Despite their unique adaptations to thrive in canopy environments without access to soil resources, epiphytes are underrepresented in studies of functional traits and of functional composition of tropical plant communities. We investigated functional traits of spermatophytic (seed‐bearing) C3 and CAM epiphyte communities in flooded and non‐flooded gallery forests in Central Brazil. The two forest types differ in floristic, structure, microclimate, and edaphic conditions. We studied plant size, leaf thickness, leaf dry matter content (LDMC), leaf water content, leaf area (LA), specific leaf area (SLA), leaf C, N, P, K, Mg, and Ca, and stable isotope ratios (δ13C and δ15N). Because photosynthetic pathway (C3 or CAM) is an important aspect of ecological differentiation for spermatophytic epiphytes, we expected that functional trait syndromes in a multivariate space would be more associated with photosynthetic pathway than forest type, and changes in abundance of C3 and CAM epiphytes would drive functional trait composition at the community level. C3 and CAM epiphytes segregated in the multivariate trait space; however, more complex functional typologies were also evident. Despite lower light levels, CAM epiphytes were more abundant in the flooded gallery forest. There, they accounted for 80% of all individuals, whereas C3 epiphytes dominated in the non‐flooded forest. These large differences in the proportion of CAM and C3 epiphytes strongly affected functional trait values at the community level, despite very little intraspecific variation in trait values between forest types for species that occurred in both forests.

  • Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community

    Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A
    2021 - Nature communications, 12: Article 5308

    Abstract: 

    Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.

  • How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment?

    Bi Q-F, Jin B-J, Zhu D, Jiang Y-G, Zheng B-X, O’Connor P, Yang X-R, Richter A, Lin X-Y, Zhu Y-H 
    2021 - Ecotoxicology and Environmental Safety, 224: Article 112643

    Abstract: 

    The positive roles of earthworms on soil functionality has been extensively documented. The capacity of the earthworm gut microbiota on decomposition and nutrient cycling under long-term fertilization in field conditions has rarely been studied. Here, we report the structural, taxonomic, and functional responses of Eisenia foetida and Pheretima guillelmi gut microbiota to different fertilization regimes and durations using 16S rRNA gene-based Illumina sequencing and high-throughput quantitative PCR techniques. Our results revealed that the core gut microbiota, especially the fermentative bacteria were mainly sourced from the soil, but strongly stimulated with species-specificity, potential benefits for the host and soil health. The functional compositions of gut microbiota were altered by fertilization with fertilization duration being more influential than fertilization regimes. Moreover, the combination of organic and inorganic fertilization with the longer duration resulted in a higher richness and connectivity in the gut microbiota, and also their functional potential related to carbon (C), nitrogen, and phosphorus cycling, particularly the labile C decomposition, denitrification, and phosphate mobilization. We also found that long-term inorganic fertilization increased the abundance of pathogenic bacteria in the P. guillelmi gut. This study demonstrates that understanding earthworm gut microbiota can provide insights into how agricultural practices can potentially alte

  • Shifts on the abundances of saprotrophic and ectomycorrhizal fungi at altered leaf litter inputs

    Marañon-Jimenez S, Radujkovic D, Verbruggen E, Grau O, Cuntz M, Peñuelas J, Richter A, Schrumpf M, Rebmann C
    2021 - Frontiers in Plant Science, 12: Article 682142

    Abstract: 

    Ectomycorrhizal (EcM) and saprotrophic fungi interact in the breakdown of organic matter, but the mechanisms underlying the EcM role on organic matter decomposition are not totally clear. We hypothesized that the ecological relations between EcM and saprotroph fungi are modulated by resources availability and accessibility, determining decomposition rates. We manipulated the amount of leaf litter inputs (No-Litter, Control Litter, Doubled Litter) on Trenched (root exclusion) and Non-Trenched plots (with roots) in a temperate deciduous forest of EcM-associated trees. Resultant shifts in soil fungal communities were determined by phospholipid fatty acids and DNA sequencing after 3 years, and CO2 fluxes were measured throughout this period. Different levels of leaf litter inputs generated a gradient of organic substrate availability and accessibility, altering the composition and ecological relations between EcM and saprotroph fungal communities. EcM fungi dominated at low levels of fresh organic substrates and lower organic matter quality, where short-distances exploration types seem to be better competitors, whereas saprotrophs and longer exploration types of EcM fungi tended to dominate at high levels of leaf litter inputs, where labile organic substrates were easily accessible. We were, however, not able to detect unequivocal signs of competition between these fungal groups for common resources. These results point to the relevance of substrate quality and availability as key factors determining the role of EcM and saprotroph fungi on litter and soil organic matter decay and represent a path forward on the capacity of organic matter decomposition of different exploration types of EcM fungi.

  • Mosses reduce soil nitrogen availability in subarctic birch fores via effects oon soil thermal regime and sequestration of deposited nitrogen

    Koranda M, Michelsen A
    2021 - Journal of Ecology, 109: 1424-1438

    Abstract: 

    In high-latitude ecosystems bryophytes are important drivers of ecosystem functions. Alterations in abundance of mosses due to global change may thus strongly influence carbon (C) and nitrogen (N) cycling and hence cause feedback on climate. The effects of mosses on soil microbial activity are, however, still poorly understood. Our study aims at elucidating how and by which mechanisms bryophytes influence microbial decomposition processes of soil organic matter and thus soil nutrient availability.We present results from a field experiment in a subarctic birch forest in northern Sweden, where we partly removed the moss cover and replaced it with an artificial soil cover for simulating moss effects on soil temperature and moisture. We combined this with a fertilization experiment with 15N-labelled N for analysing the effects of moss N sequestration on soil processes.Our results demonstrate the capacity of mosses to reduce soil N availability and retard N cycling. The comparison with artificial soil cover plots suggests that the effect of mosses on N cycling is linked to the thermal insulation capacity of mosses causing low average soil temperature in summer and strongly reduced soil temperature fluctuations, the latter also leading to a decreased frequency of freeze-thaw events in autumn and spring. Our results also showed, however, that the negative temperature effect of mosses on soil microbial activity was in part compensated by stimulatory effects of the moss layer, possibly linked to leaching of labile substrates from the moss. Furthermore, our results revealed that bryophytes efficiently sequester added N from wet deposition and thus prevent effects of increased atmospheric N deposition on soil N availability and soil processes. Synthesis. Our study emphasizes the important role of mosses in carbon and nutrient cycling in high-latitude ecosystems and the potential strong impacts of reductions in moss abundance on microbial decomposition processes and nutrient availability in subarctic and boreal forests.

  • Empirical support for the biogeochemical niche hypothesis in forest trees

    Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, Guille P, Gargallo-Garriga A, Ciais P, Janssens IA, Obersteiner M, Richter A, Peñuelas J
    2021 - Nature Ecology & Evolution, 5: 184-194

    Abstract: 

    The possibility of using the elemental compositions of species as a tool to identify species/genotype niche remains to be tested at a global scale. We investigated relationships between the foliar elemental compositions (elementomes) of trees at a global scale with phylogeny, climate, N deposition and soil traits. We analysed foliar N, P, K, Ca, Mg and S concentrations in 23,962 trees of 227 species. Shared ancestry explained 60–94% of the total variance in foliar nutrient concentrations and ratios whereas current climate, atmospheric N deposition and soil type together explained 1–7%, consistent with the biogeochemical niche hypothesis which predicts that each species will have a specific need for and use of each bio-element. The remaining variance was explained by the avoidance of nutritional competition with other species and natural variability within species. The biogeochemical niche hypothesis is thus able to quantify species-specific tree niches and their shifts in response to environmental changes.

  • Rapid Responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia

    Lugli LF, Rosa JS, Andersen KM, Di Ponzio R, Almeida RV, Pires M, Cordeiro AL, Cunha HFV, Martins NP, Assis RL, Moraes ACM, Souza ST, Arag˜ao LEOC, Camargo JL, Fuchslueger L, Schaap KJ, Valverde-Barrantes OJ, Meir P, Quesada CA, Mercado LM, Hartley IP
    2021 - New Phytologist, 230: 116-128

    Abstract: 

    Soil nutrient availability can strongly affect root traits. In tropical forests, phosphorus (P) is often considered the main limiting nutrient for plants. However, support for the P paradigm is limited, and N and cations might also control tropical forests functioning. We used a large-scale experiment to determine how the factorial addition of nitrogen (N), P and cations affected root productivity and traits related to nutrient acquisition strategies (morphological traits, phosphatase activity, arbuscular mycorrhizal colonisation and nutrient contents) in a primary rainforest growing on low-fertility soils in Central Amazonia after 1 yr of fertilisation. Multiple root traits and productivity were affected. Phosphorus additions increased annual root productivity and root diameter, but decreased root phosphatase activity. Cation additions increased root productivity at certain times of year, also increasing root diameter and mycorrhizal colonisation. P and cation additions increased their element concentrations in root tissues. No responses were detected with N addition. Here we showed that rock-derived nutrients determined root functioning in low-fertility Amazonian soils, demonstrating not only the hypothesised importance of P, but also highlighting the role of cations. The changes in fine root traits and productivity indicated that even slow-growing tropical rainforests can respond rapidly to changes in resource availability.

  • Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest

    Van Langenhove L, Depaepe T, Verryckt LT, Fuchslueger L, Leroy JDC, Moorthy SMK, Gargallo-Garriga A, Ellwood MDF, Verbeeck H, Van Der Straeten D, Peñuelas J, Janssens IA
    2021 - Science of The Total Environment, 754: Article 142202

    Abstract: 

    Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, yet little is known about the contribution made by free-living nitrogen fixers inhabiting the often-extensive forest canopy. We used the acetylene reduction assay, calibrated with 15N2, to measure free-living BNF on forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest floor in leaf litter and soil. We used a combination of calculated and published component densities to upscale free-living BNF rates to the forest level. We found that bryophytes and leaves situated in the canopy in particular displayed high mass-based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various canopy components. Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen by atmospheric deposition.

Book chapters and other publications

No matching database entries were found.

Word Document